
Polyspace® Code Prover™
Getting Started Guide

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Code Prover™ Getting Started Guide
© COPYRIGHT 2013–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2013 Online only Revised for Version 9.0 (Release 2013b)
March 2014 Online Only Revised for Version 9.1 (Release 2014a)
October 2014 Online Only Revised for Version 9.2 (Release 2014b)
March 2015 Online Only Revised for Version 9.3 (Release 2015a)
September 2015 Online Only Revised for Version 9.4 (Release 2015b)
March 2016 Online Only Revised for Version 9.5 (Release 2016a)
September 2016 Online Only Revised for Version 9.6 (Release 2016b)
March 2017 Online Only Revised for Version 9.7 (Release 2017a)
September 2017 Online Only Revised for Version 9.8 (Release 2017b)
March 2018 Online Only Revised for Version 9.9 (Release 2018a)
September 2018 Online Only Revised for Version 9.10 (Release 2018b)
March 2019 Online Only Revised for Version 10.0 (Release 2019a)
September 2019 Online Only Revised for Version 10.1 (Release 2019b)

Introduction to Polyspace Code Prover
1

Polyspace Code Prover Product Description 1-2

Polyspace Products for Code Analysis and Verification 1-3
Using Polyspace Products in Software Development 1-3
Polyspace Products for C/C++ Code . 1-4
Using Desktop and Server Products Together 1-5
Polyspace Products for Ada Code . 1-7

Polyspace Verification . 1-8
Polyspace Verification . 1-8
Value of Polyspace Verification . 1-8
How Polyspace Verification Works . 1-10

Install Polyspace Desktop Products . 1-12
Workflow . 1-12
Product Installation . 1-14
Install Polyspace with Other MathWorks Products 1-16

Install Polyspace Code Prover
2

Install Polyspace Plugin for Eclipse . 2-2
Install Polyspace Plugin for Eclipse IDE 2-2
Uninstall Polyspace Plugin for Eclipse IDE 2-4

Install Products for Submitting Polyspace Analysis from
Desktops to Remote Server . 2-5

Choose Between Local and Remote Analysis 2-5
Requirements for Remote Analysis . 2-6

v

Contents

Configure and Start Server . 2-9
Configure Client . 2-12
Offload Polyspace Analysis from Desktop to Server 2-15
Submit Analysis Jobs from Multiple Releases of Polyspace . . 2-15

Set Up Polyspace Metrics . 2-18
Requirements for Polyspace Metrics 2-18
Configure and Start Polyspace Metrics Server 2-20
Configure Client Side . 2-21
Configure Web Server for HTTPS . 2-22
Change Web Server Port Number for Metrics Server 2-24

Get Started with Polyspace Code Prover
3

Compiler Requirements . 3-2

Run Polyspace Code Prover on Desktop 3-3
Run Polyspace in User Interface . 3-4
Run Polyspace on Windows or Linux Command Line 3-7
Run Polyspace in Eclipse . 3-8
Run Polyspace in MATLAB . 3-8

Review Polyspace Code Prover Analysis Results 3-11
Interpret Results . 3-11
Address Results Through Bug Fix or Comments 3-13
Manage Results . 3-15

Send Code Prover Analysis from Desktop to Locally Hosted
Server . 3-17

Client-Server Workflow for Running Bug Finder Analysis . . . 3-17
Prerequisites . 3-18
Configure and Start Server . 3-19
Configure Client . 3-21
Send Analysis from Client to Server 3-22

vi Contents

Polyspace Bug Finder and Polyspace Code Prover
4

Choose Between Polyspace Bug Finder and Polyspace Code
Prover . 4-2

How Bug Finder and Code Prover Complement Each Other . . 4-2
Workflow Using Both Bug Finder and Code Prover 4-8

vii

Introduction to Polyspace Code
Prover

• “Polyspace Code Prover Product Description” on page 1-2
• “Polyspace Products for Code Analysis and Verification” on page 1-3
• “Polyspace Verification” on page 1-8
• “Install Polyspace Desktop Products” on page 1-12

1

Polyspace Code Prover Product Description
Prove the absence of run-time errors in software

Polyspace Code Prover™ is a sound static analysis tool that proves the absence of
overflow, divide-by-zero, out-of-bounds array access, and other run-time errors in C and C
++ source code. It produces results without requiring program execution, code
instrumentation, or test cases. Polyspace Code Prover uses semantic analysis and abstract
interpretation based on formal methods to verify software interprocedural, control, and
data flow behavior. You can use it to verify handwritten code, generated code, or a
combination of the two. Each code statement is color-coded to indicate whether it is free
of run-time errors, proven to fail, unreachable, or unproven.

Polyspace Code Prover displays range information for variables and function return
values, and can prove which variables exceed specified range limits. Code verification
results can be used to track quality metrics and check conformance with your software
quality objectives. Polyspace Code Prover can be used with the Eclipse™ IDE to verify
code on your desktop.

Support for industry standards is available through IEC Certification Kit (for IEC 61508
and ISO 26262) and DO Qualification Kit (for DO-178).

1 Introduction to Polyspace Code Prover

1-2

Polyspace Products for Code Analysis and Verification
In this section...
“Using Polyspace Products in Software Development” on page 1-3
“Polyspace Products for C/C++ Code” on page 1-4
“Using Desktop and Server Products Together” on page 1-5
“Polyspace Products for Ada Code” on page 1-7

Polyspace products use static analysis to check code for run-time errors, coding standard
violations, security vulnerabilities and other issues. A static analysis tool such as
Polyspace Code Prover can cover all possible execution paths through a program and
track data flow along these paths following certain mathematical rules. The analysis can
be much deeper than dynamic testing and expose potential run-time errors that might not
be otherwise found in regular software testing. A static analysis tool such as Polyspace
Bug Finder™ can scan a program quickly for more obvious run-time errors and coding
constructs that potentially lead to run-time errors or unexpected results.

A software development process can use analysis results from Polyspace to complement
dynamic testing. Using a product such as Code Prover, you can drastically reduce efforts
in dynamic testing and focus only on areas where static analysis is unable to prove the
absence of a run-time error. Using a product such as Bug Finder, you can maintain a list
of potentially problematic coding practices and automatically check for these practices
during development.

Using Polyspace Products in Software Development
The Polyspace suite of products supports all phases of a software development process:

• Prior to code submission:

Developers can run the Polyspace desktop products to check their code during
development or right before submission to meet predefined quality goals.

The desktop products can be integrated into IDEs such as Eclipse or run with scripts
during compilation. The analysis results can be reviewed in IDEs such as Eclipse or in
the graphical user interface of the desktop products.

 Polyspace Products for Code Analysis and Verification

1-3

• After code submission:

The Polyspace server products can run automatically on newly committed code as a
build step in a continuous integration process (using tools such as Jenkins). The
analysis runs on a server and the results are uploaded to a web interface for
collaborative review.

See “Polyspace Products for C/C++ Code” on page 1-4.

When you use both the desktop and server products, your pre-submission workflow can
transition smoothly to the post-submission workflow. See “Using Desktop and Server
Products Together” on page 1-5.

Polyspace Products for C/C++ Code
Polyspace provides these products for desktop usage:

1 Introduction to Polyspace Code Prover

1-4

• Polyspace Bug Finder to check code for semantic errors that a compiler cannot
detect (such as use of = instead of ==), concurrency issues, security vulnerabilities and
other defects in C and C++ source code. The analysis can also detect some run-time
errors.

• Polyspace Code Prover to perform a much deeper check and prove absence of
overflow, divide-by-zero, out-of-bounds array access and other run-time errors in C and
C++ source code.

Depending on your quality goals, you can run one or both products. See “Choose Between
Polyspace Bug Finder and Polyspace Code Prover” on page 4-2.

Polyspace provides these products for server usage:

• Polyspace Bug Finder Server™ to run Bug Finder automatically on a server and
upload the results to a web interface for review, and Polyspace Bug Finder Access™
to review the uploaded results.

Typically, Polyspace Bug Finder Server runs on a few build servers and checks newly
committed code as part of software build and testing. Each reviewer (developer,
quality assurance engineer or development manager) has a Polyspace Bug Finder
Access license to review the uploaded analysis results.

• Polyspace Code Prover Server to run Code Prover automatically on a server and
upload the results to a web interface for review, and Polyspace Code Prover Access
to review the uploaded results.

Typically, Polyspace Code Prover Server runs on a few build servers and checks newly
committed code as part of software build and testing. Each reviewer (developer,
quality assurance engineer or development manager) has a Polyspace Code Prover
Access license to review the uploaded analysis results.

Using Desktop and Server Products Together
In a software development workflow, you benefit most from using the desktop and server
products together. Developers can run the desktop products while coding and fix or justify
the issues found. At this stage, it is easy to rework the code because it is still under
development.

After code submission, the server products can run a more comprehensive analysis. The
analysis will reveal fewer issues if the developer has already fixed them before

 Polyspace Products for Code Analysis and Verification

1-5

submission. If the developer has triaged issues for fixing later or justified them, this
information can be carried over to the server-side analysis so that fewer results need to
be reviewed. The remaining results can be uploaded to the Polyspace Access web
interface. Quality engineers can review these results and based on the severity of the
results, assign them to developers for fixing.

The desktop and server products can be coordinated in these ways:

• You can use the same analysis configuration with both the desktop and server
products. If you use the same analysis configuration, you see the same analysis results
on the desktop and server side.

At the same time, you can perform a more comprehensive checking on the server side.
If you are running Bug Finder, you can increase the number of checkers for the server-
side analysis compared to the desktop-side analysis. If you are running Code Prover,
you can use stricter assumptions for the server-side analysis compared to the desktop-
side analysis.

The server side analysis can also run on more complete applications as opposed to the
desktop side analysis, which runs on individual modules.

• If you enter comments on the desktop side to justify an analysis result, these
comments can be reused on the server side. If you justify analysis results on the
desktop side or set a status on them for fixing later, you are saved from repeating this
work for the server-side analysis results.

If you enter the comments in your source code as code annotations using a specific
syntax, the server-side analysis can read the code annotations and import them to the
server-side analysis results.

• You can configure your analysis on the desktop but run the analysis on a dedicated
server. In this workflow:

• You perform a one-time setup to enable communication between the desktop and
server products using the distributed computing product, MATLAB® Parallel
Server™ .

• During development, you trigger the analysis from a desktop product but the
analysis runs on a server using a server product. The results are downloaded back
to the desktop product for review.

Since the analysis is offloaded to a server, this workflow saves processing power on
the developer's desktop.

1 Introduction to Polyspace Code Prover

1-6

Polyspace Products for Ada Code
Polyspace provides these products for verifying Ada code:

• Polyspace Client™ for Ada to check Ada code for run-time errors on a desktop.
• Polyspace Server for Ada to check Ada code for run-time errors on a server.

You can either use the desktop product to run the analysis on your desktop, or a
combination of the desktop and server products to run the analysis on a server. The
analysis results are downloaded to your desktop for review.

If you have a Polyspace Code Prover Access license and have set up the web interface of
Polyspace Code Prover Access, you can upload each individual Ada result from the Ada
desktop products to the web interface for collaborative review.

See also:

• https://www.mathworks.com/products/polyspace-ada.html
• https://www.mathworks.com/products/polyspaceserverada/

See Also

Related Examples
• “Install Polyspace Desktop Products” (Polyspace Bug Finder)
• “Install Polyspace Server and Access Products” (Polyspace Bug Finder Server)

 See Also

1-7

https://www.mathworks.com/products/polyspace-ada.html
https://www.mathworks.com/products/polyspaceserverada/

Polyspace Verification

In this section...
“Polyspace Verification” on page 1-8
“Value of Polyspace Verification” on page 1-8
“How Polyspace Verification Works” on page 1-10

Polyspace Verification
Polyspace products verify C, C++, and Ada code by detecting run-time errors before code
is compiled and executed.

To verify the source code, you set up verification parameters in a project, run the
verification, and review the results. A graphical user interface helps you to efficiently
review verification results. The software assigns a color to operations in the source code
as follows:

• Green – Indicates that the operation is proven to not have certain kinds of error.
• Red – Indicates that the operation is proven to have at least one error.
• Gray – Indicates unreachable code.
• Orange – Indicates that the operation can have an error along some execution paths.

The color-coding helps you to quickly identify errors and find the exact location of an
error in the source code. After you fix errors, you can easily run the verification again.

Value of Polyspace Verification
Polyspace verification can help you to:

• “Enhance Software Reliability” on page 1-9
• “Decrease Development Time” on page 1-9
• “Improve the Development Process” on page 1-10

1 Introduction to Polyspace Code Prover

1-8

Enhance Software Reliability

Polyspace software enhances the reliability of your C/C++ applications by proving code
correctness and identifying run-time errors. Using advanced verification techniques,
Polyspace software performs an exhaustive verification of your source code.

Because Polyspace software verifies all executions of your code, it can identify code that:

• Never has an error
• Always has an error
• Is unreachable
• Might have an error

With this information, you know how much of your code does not contain run-time errors,
and you can improve the reliability of your code by fixing errors.

You can also improve the quality of your code by using Polyspace verification software to
check that your code complies with established coding standards, such as the MISRA C®,
MISRA® C++ or JSF® C++ standards.1

Decrease Development Time

Polyspace software reduces development time by automating the verification process and
helping you to efficiently review verification results. You can use it at any point in the
development process. However, using it during early coding phases allows you to find
errors when it is less costly to fix them.

You use Polyspace software to verify source code before compile time. To verify the
source code, you set up verification parameters in a project, run the verification, and
review the results. This process takes significantly less time than using manual methods
or using tools that require you to modify code or run test cases.

Color-coding of results helps you to quickly identify errors. You will spend less time
debugging because you can see the exact location of an error in the source code. After
you fix errors, you can easily run the verification again.

Polyspace verification software helps you to use your time effectively. Because you know
the parts of your code that do not have errors, you can focus on the code with proven (red
code) or potential errors (orange code).

1. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA Consortium.

 Polyspace Verification

1-9

Reviewing code that might have errors (orange code) can be time-consuming, but
Polyspace software helps you with the review process. You can use filters to focus on
certain types of errors or you can allow the software to identify the code that you should
review.

Improve the Development Process

Polyspace software makes it easy to share verification parameters and results, allowing
the development team to work together to improve product reliability. Once verification
parameters have been set up, developers can reuse them for other files in the same
application.

Polyspace verification software supports code verification throughout the development
process:

• An individual developer can find and fix run-time errors during the initial coding
phase.

• Quality assurance engineers can check overall reliability of an application.
• Managers can monitor application reliability by generating reports from the
verification results.

How Polyspace Verification Works
Polyspace software uses static verification to prove the absence of run-time errors. Static
verification derives the dynamic properties of a program without actually executing it.
This differs significantly from other techniques, such as run-time debugging, in that the
verification it provides is not based on a given test case or set of test cases. The dynamic
properties obtained in the Polyspace verification are true for all executions of the
software.

What is Static Verification

Static verification is a broad term, and is applicable to any tool that derives dynamic
properties of a program without executing the program. However, most static verification
tools only verify the complexity of the software, in a search for constructs that may be
potentially erroneous. Polyspace verification provides deep-level verification identifying
almost all run-time errors and possible access conflicts with global shared data.

Polyspace verification works by approximating the software under verification, using
representative approximations of software operations and data.

1 Introduction to Polyspace Code Prover

1-10

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable i never overflows the range of tab, a traditional approach
would be to enumerate each possible value of i. One thousand checks would be required.

Using the static verification approach, the variable i is modelled by its domain variation.
For instance, the model of i is that it belongs to the static interval [0..999]. (Depending
on the complexity of the data, convex polyhedrons, integer lattices and more elaborate
models are also used for this purpose).

By definition, an approximation leads to information loss. For instance, the information
that i is incremented by one every cycle in the loop is lost. However, the important fact is
that this information is not required to ensure that no range error will occur; it is only
necessary to prove that the domain variation of i is smaller than the range of tab. Only
one check is required to establish that — and hence the gain in efficiency compared to
traditional approaches.

Static code verification has an exact solution. However, this exact solution is not practical,
as it would require the enumeration of all possible test cases. As a result, approximation
is required for a usable tool.

Exhaustiveness

Nothing is lost in terms of exhaustiveness. The reason is that Polyspace verification works
by performing upper approximations. In other words, the computed variation domain of a
program variable is a superset of its actual variation domain. As a result, Polyspace
verifies run-time error items that require checking.

 Polyspace Verification

1-11

Install Polyspace Desktop Products
Polyspace checks C/C++ code for bugs, run-time errors, coding standard violations, and
other issues by using static analysis. With the desktop products, Polyspace Bug Finder
and Polyspace Code Prover, you can perform the checks on individual desktops prior to
code submission.

For an overview of all Polyspace products, see “Polyspace Products for Code Analysis and
Verification” on page 1-3.

Workflow
Using the Polyspace desktop products, individual developers can check their code for
bugs and run-time errors during development.

For uniform standards across a project or team, all developers in the project or team can
use a predefined set of checks. Developers can qualify their code for submission based on
these predefined checks. After code submission to a shared repository, a more extensive
post-submission analysis can run on a server by using the Polyspace server products.

1 Introduction to Polyspace Code Prover

1-12

The workflow consists of these steps:

• Running Polyspace analysis:

During development, individual developers start the analysis from their IDEs by using
scripts or from the user interface of the desktop products.

For code generated from:

• Simulink® models, you can start the analysis directly from Simulink after code
generation.

• MATLAB code, you can start the analysis directly in the MATLAB Coder App after
code generation.

To save processing power on the developer's desktop, you can offload the analysis to a
server. After analysis, the results are downloaded to the desktop for review.

• Reviewing Polyspace results:

 Install Polyspace Desktop Products

1-13

After analysis, developers review the results (bugs, run-time errors, coding standard
violations, and so on) in the desktop product user interface.

If using Eclipse or an IDE based on Eclipse, developers can review the results directly
in the IDE.

These steps describe a workflow prior to code submission. After code submission, a build
automation tool can run a Polyspace analysis on a server. The tool can also upload the
analysis results to a web browser for collaborative review by developers or quality
engineers. See “Install Polyspace Server and Access Products” (Polyspace Code Prover
Server).

Product Installation
For this workflow, you must install the following products on individual desktops.

Polyspace Products to Run Analysis

Install Polyspace Bug Finder or Polyspace Code Prover to run the analysis.

Installation

Run the MathWorks® installer. Choose a license for Polyspace desktop products. You can
get the installer and license by purchasing the product or requesting a trial. For detailed
instructions, see “Installation, Licensing, and Activation”.

You require Polyspace Bug Finder to install Polyspace Code Prover.

Installation Folder

A default installation folder is used based on your operating system and the release
version. During installation, you can change this default folder if needed.

For instance, the default installation folder for release R2019a is listed here.

1 Introduction to Polyspace Code Prover

1-14

https://www.mathworks.com/downloads/

Operating System Default Installation Folder
Windows® C:\Program Files\Polyspace\R2019a
Linux® (most distributions) /usr/local/Polyspace/R2019a
Mac /Applications/Polyspace/R2019a

Post-Installation Steps

After you install a Polyspace desktop product, you can open the Polyspace user interface
or run command-line executables. You can start an analysis in the user interface or from
the Windows or Linux command line.

To start the analysis from other environments, perform these post-installation steps:

• To run Polyspace from Eclipse or an IDE based on Eclipse, install the Polyspace plugin.
See “Install Polyspace Plugin for Eclipse” on page 2-2.

• To run Polyspace with MATLAB scripts, install MATLAB. Then, perform a one-time
setup to link your Polyspace and MATLAB installations. See “Integrate Polyspace with
MATLAB and Simulink”.

• To run Polyspace from Simulink, install MATLAB, Simulink, and Embedded Coder®.
Then, perform a one-time setup to link your Polyspace and Simulink installations. See
“Integrate Polyspace with MATLAB and Simulink”.

• To run Polyspace from the MATLAB Coder App, install MATLAB and Embedded Coder.
Then, perform a one-time setup to link your Polyspace and MATLAB installations. See
“Integrate Polyspace with MATLAB and Simulink”.

• To offload the analysis to a server, install Polyspace Bug Finder only on your desktop.
On the server side, install the Polyspace server products and MATLAB Parallel Server
to handle analysis jobs from multiple desktops. See “Install Products for Submitting
Polyspace Analysis from Desktops to Remote Server” on page 2-5.

Polyspace Products to Review Results

The Polyspace Bug Finder or Polyspace Code Prover installation is sufficient to review the
results.

 Install Polyspace Desktop Products

1-15

You can review Bug Finder and Code Prover results with only Bug Finder desktop. For
instance, if you offload the analysis to a server and only review the downloaded analysis
results on your desktop, you require Bug Finder only.

In Eclipse or IDEs based on Eclipse, if you install the Polyspace plugin, you can see the
results directly in the IDE.

Install Polyspace with Other MathWorks Products
To install Polyspace with other MathWorks products such as MATLAB, run the MathWorks
installer twice.

• In the first run, choose the license that corresponds to the other MathWorks products,
such as MATLAB, Simulink, or Embedded Coder.

• In the second run, choose the license that corresponds to the Polyspace products.

In this workflow, products such as MATLAB and Simulink are installed in a different root
folder than the Polyspace products. You can link the two installations and use MATLAB
scripts to run Polyspace. See “Integrate Polyspace with MATLAB and Simulink”.

If you install the Polyspace desktop and server products, you also have to run the installer
twice with separate licenses. The desktop and server products are installed in separate
root folders. For instance, in Windows, the default root folders for an R2019a installation
are:

• Polyspace desktop products: C:\Program Files\Polyspace\R2019a.

This folder contains executables to run analysis with the products, Polyspace Bug
Finder and Polyspace Code Prover.

• Polyspace server products: C:\Program Files\Polyspace Server\R2019a.

This folder contains executables to run analysis with the products, Polyspace Bug
Finder Server and Polyspace Code Prover Server.

1 Introduction to Polyspace Code Prover

1-16

See Also

More About
• “Run Polyspace Code Prover on Desktop” on page 3-3
• “Review Polyspace Code Prover Analysis Results” on page 3-11
• “Install Polyspace Server and Access Products” (Polyspace Code Prover Server)

 See Also

1-17

Install Polyspace Code Prover

2

Install Polyspace Plugin for Eclipse
This topic shows how to install or uninstall the Polyspace plugin for Eclipse.

Install Polyspace Plugin for Eclipse IDE
The Polyspace plugin is supported for Eclipse versions 4.7 to 4.9. You can install the
Polyspace plugin only after you:

• Install and set up Eclipse Integrated Development Environment (IDE). For more
information, see the Eclipse documentation at www.eclipse.org.

• Install Java® 8 or newer. See Java documentation at www.java.com.

If you run into issues because of incompatible Java versions, see “Eclipse Java Version
Incompatible with Polyspace Plug-in”.

• Uninstall any previous Polyspace plugins. For more information, see “Uninstall
Polyspace Plugin for Eclipse IDE” on page 2-4.

To install the Polyspace plugin:

1 From the Eclipse editor, select Help > Install New Software. The Install wizard
opens, displaying the Available Software page.

2 Click Add to open the Add Repository dialog box.
3 In the Name field, specify a name for your Polyspace site, for example,

Polyspace_Eclipse_PlugIn.
4 Click Local, to open the Browse for Folder dialog box.
5 Navigate to the polyspaceroot\polyspace\plugin\eclipse folder. Then click

OK.

polyspaceroot is the installation folder for the Polyspace product.
6 Click OK to close the Add Repository dialog box.
7 On the Available Software page, select Polyspace Plugin for Eclipse.

2 Install Polyspace Code Prover

2-2

https://www.eclipse.org/
https://www.java.com/en/

8 Click Next.
9 On the Install Details page, click Next.
10 On the Review Licenses page, review and accept the license agreement. Then click

Finish.
11 Restart Eclipse. You might get this prompt:Select the folder where

Polyspace Bug Finder was installed. Enter the path to your Polyspace
installation, for instance, C:\Program Files\Polyspace\R2019a.

Once you install the plugin, in the Eclipse editor, you’ll see:

• A Polyspace menu
• A Polyspace Run - Code Prover, Results List - Code Prover, and Result Details

view.

 Install Polyspace Plugin for Eclipse

2-3

Uninstall Polyspace Plugin for Eclipse IDE
Before installing a new Polyspace plugin, you must uninstall any previous Polyspace
plugins:

1 In Eclipse, select Help > About Eclipse.
2 Select Installation Details.
3 Select the Polyspace plugin and select Uninstall.

Follow the uninstall wizard to remove the Polyspace plugin. You must restart Eclipse
for changes to take effect.

See Also

More About
• “Run Polyspace Analysis in Eclipse”

2 Install Polyspace Code Prover

2-4

Install Products for Submitting Polyspace Analysis from
Desktops to Remote Server

You can perform a Polyspace analysis locally on your desktop or offload the analysis to
one or more dedicated remote servers. This topic shows how to set up the dispatch of
Polyspace analysis from desktop clients to remote servers. Once configured, you can send
the Polyspace analysis to a remote server and view the downloaded results on your
desktop.

Choose Between Local and Remote Analysis
To determine when to use local or remote analysis, use the rules listed in this table.

 Install Products for Submitting Polyspace Analysis from Desktops to Remote Server

2-5

Type When to Use
Remote Source files are large and execution time of analysis is lengthy.

Typically, a Code Prover analysis takes significantly longer than a
Bug Finder analysis and benefits from running on a dedicated
server.

Local Source files are small and execution time of analysis is short.

Requirements for Remote Analysis
A typical distributed network for running remote analysis consists of these parts:

• Client nodes: On the client node, you configure your Polyspace project or scripts, and
then submit a job that runs Polyspace.

• Head node: The head node distributes the submitted jobs to worker nodes.
• Worker node(s): The Polyspace analysis runs on a worker node.

In this workflow, you install the product MATLAB Parallel Server to manage submissions
from multiple clients. An analysis job is created for each submission and placed in a
queue. As soon as a worker node is available, the next analysis job from the queue is run
on the worker.

2 Install Polyspace Code Prover

2-6

In the simplest remote analysis configuration, the same computer can serve as the head
node and worker node. Note that you can run one Polyspace analysis on one worker only.
You cannot distribute the analysis over multiple workers. Only if you submit more than
one analysis job, you can distribute the jobs over multiple workers.

This table lists the product requirements for remote analysis.

 Install Products for Submitting Polyspace Analysis from Desktops to Remote Server

2-7

Location Requirements Installation
Client
node

Polyspace Bug Finder

A Polyspace Bug Finder license is sufficient to
trigger a Bug Finder or Code Prover analysis on
the server, and review the downloaded analysis
results.

Run the MathWorks
installer on the client
desktops. Choose a license
for Polyspace desktop
products.

For detailed instructions,
see “Installation,
Licensing, and Activation”.

Head
node

MATLAB Parallel Server (earlier called MATLAB
Distributed Computing Server)

Run the MathWorks
installer on the server(s).
Choose a license for
MATLAB Parallel Server
installation.

For detailed instructions,
see “Integrate MATLAB
Job Scheduler for Network
License Manager”
(MATLAB Parallel Server).

Worker
nodes

• MATLAB Parallel Server (earlier called
MATLAB Distributed Computing Server)

• Polyspace Bug Finder Server
• Polyspace Code Prover Server (if you choose to

run Code Prover)

To install:

• MATLAB Parallel
Server, run the
MathWorks installer on
the server(s). Choose a
license for MATLAB
Parallel Server
installation.

• Polyspace Bug Finder
Server and/or
Polyspace Code Prover
Server, run the
MathWorks installer.
Choose a license for
Polyspace server
products.

2 Install Polyspace Code Prover

2-8

https://www.mathworks.com/downloads/
https://www.mathworks.com/downloads/
https://www.mathworks.com/downloads/
https://www.mathworks.com/downloads/
https://www.mathworks.com/downloads/
https://www.mathworks.com/downloads/

Configure and Start Server
On the computers that act as the worker nodes of the server, you install MATLAB Parallel
Server and the Polyspace server products in two separate folders. The MATLAB Parallel
Server installation must know where the Polyspace server products are located so that it
can route the Polyspace analysis. To link the two installations, specify the paths to the
root folder of the Polyspace server products in your MATLAB Parallel Server installations.

Then configure and start MATLAB Parallel Server (the mjs service) on all computers that
act as the head node and worker nodes.

Configure mjs Service Settings

Before starting services, you must configure the mjs service settings.

1 Navigate to matlabroot\toolbox\parallel\bin, where matlabroot is the
MATLAB Parallel Server installation folder, for instance, C:\Program Files
\MATLAB\R2019a.

2 Modify the file mjs_def.bat (Windows) or mjs_def.sh (Linux). To edit and save
the file, you have to open your editor in administrator mode.

Read the instructions in the file and uncomment the lines as needed. At a minimum,
you might have to uncomment these lines:

• Hostname:

REM set HOSTNAME=%strHostname%.%strDomain%

in Windows or

#HOSTNAME=`hostname -f`

in Linux. Explicitly specify your computer host name.
• Security level:

REM set SECURITY_LEVEL=

in Windows or

 Install Products for Submitting Polyspace Analysis from Desktops to Remote Server

2-9

#SECURITY_LEVEL=""

in Linux. Explicitly specify a security level.

Otherwise, you might see an error later when starting the job scheduler.

Specify Polyspace Installation Paths

When you offload an analysis using a Polyspace desktop product installation, the server
must run the analysis using a Polyspace server product installation from the same
release. For instance, if you offload an analysis from an R2019a desktop product, the
analysis must run using the R2019a server product. To ensure that the correct Polyspace
server product is used, you must specify the installation paths of the Polyspace server
products in your MATLAB Parallel Server installations.

To specify the Polyspace installation paths:

1 Navigate to matlabroot\toolbox\parallel\bin\. Here, matlabroot is the
MATLAB installation folder, for instance, C:\Program Files\MATLAB\R2019a.

2 Uncomment and modify the following line in the file mjs_polyspace.conf. To edit
and save the file, you have to open your editor in administrator mode.

POLYSPACE_SERVER_ROOT=polyspaceserverroot

Here, polyspaceserverroot is the installation path of the server products, for
instance:

C:\Program Files\Polyspace Server\R2019a

If you use multiple releases of Polyspace desktop and server products, the MATLAB
Parallel Server release must be the later one. For instance, if you offload analysis jobs
using both R2019a and R2019b Polyspace desktop and server products, the MATLAB
Parallel Server installation must be an R2019b one. See also “Submit Analysis Jobs from
Multiple Releases of Polyspace” on page 2-15.

Start mjs Service and Assign as Head Node or Worker Node

To configure a server with multiple workers, start the service that runs a job scheduler
(the mjs service) on the computer that acts as the head node and all computers that act

2 Install Polyspace Code Prover

2-10

as worker nodes. In the simplest configuration, the same computer can act as the head
node and a worker node.

To set up a cluster with one head node and several workers, on the computer that acts as
the head node:

1 Open the Admin Center window. Navigate to matlabroot\toolbox\parallel
\bin\ and execute the file admincenter.bat (Windows) or admincenter.sh
(Linux). Here, matlabroot is the MATLAB installation folder, for instance,
C:\Program Files\MATLAB\R2019a.

2 In the Hosts section, add the host names of all computers that you want to use as
head and worker nodes of the cluster. Start the mjs service.

 Install Products for Submitting Polyspace Analysis from Desktops to Remote Server

2-11

The service uses the settings specified in the file mjs_def.bat (Windows) or
mjs_def.sh (Linux).

3 Right-click each host. Select either Start MJS (head node) or Start Workers (worker
nodes).

The hosts appear in the MATLAB Job Scheduler or Workers section. In each
section, select the host and click Start to start the MATLAB Job Scheduler or the
workers.

Selecting a computer as host starts the mjs service on that computer. You must have
permission to start services on other computers in the network. For instance, on
Windows, you must be in the Administrators group for other computers where you want
to start the mjs service. Otherwise, you have to start the mjs services individually on
each computer that acts as a worker.

For more details and command-line workflows, see:

• “Integrate MATLAB Job Scheduler for Network License Manager” (MATLAB Parallel
Server)

• mjs

Configure Client
Configure the client node so that it can communicate with the computer that serves as the
head node of the MATLAB Parallel Server cluster. For scheduling jobs, you can use the job
scheduler that comes with MATLAB Parallel Server (MATLAB Job Scheduler). If you were
already using a third-party scheduler such as HPC Server or PBS Professional, you can
continue to use that scheduler.

Use MATLAB Job Scheduler

Configure the client node in the user interface of the Polyspace desktop products:

1 Select Tools > Preferences.
2 Click the Server Configuration tab. Under MATLAB Parallel Server cluster

configuration:

2 Install Polyspace Code Prover

2-12

a In the Job scheduler host name field, specify the computer for the head node
of the cluster. This computer hosts the MATLAB job scheduler.

If the port used on the computer hosting the MATLAB job scheduler is different
from 27350, enter the port name explicitly with the notation
hostName:portNumber.

b Due to the network setting, the job scheduler may be unable to connect back to
your local computer. If so, enter the IP address of the client computer in the
Localhost IP address field.

Use Third Party Scheduler

Instead of the job scheduler provided with MATLAB Parallel Server, you can use a third
party scheduler such as HPC Server or PBS Professional. To use a third-party scheduler:

1 In the Polyspace user interface, select Tools > Preferences.
2 In the Polyspace Preferences window, click the Settings button beside Cluster

Profile Manager.
3 In the Cluster Profile Manager window, click Add Cluster Profile. Select a third-

party scheduler. You see a default cluster profile using this scheduler.

 Install Products for Submitting Polyspace Analysis from Desktops to Remote Server

2-13

4 Specify the properties of the cluster profile.

a Click Edit. Modify the default properties as needed.
b Click Validate. At a minimum, the cluster connection test and the job test must

complete.
5 In the Polyspace Preferences window, for Job scheduler host name, specify the

cluster profile name that you just created (for instance, HPCServerProfile1 in the
example above).

You can also create a cluster profile that uses the MATLAB job scheduler using these
steps. For more information on cluster profiles, see “Discover Clusters and Use Cluster
Profiles” (Parallel Computing Toolbox).

2 Install Polyspace Code Prover

2-14

Offload Polyspace Analysis from Desktop to Server
Once the configuration is over, you can offload an analysis from a Polyspace desktop
product installation to a remote server. You can do one of the following:

• Start a remote analysis from the user interface of the Polyspace desktop products.

See “Send Polyspace Analysis from Desktop to Remote Servers”.
• Start a remote analysis with Windows or Linux scripts.

See “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”. In the
simplest configuration, the same computer can be used as a client and server. For a
simple tutorial that uses this configuration and walks through all the steps for
offloading a Polyspace analysis, see “Send Code Prover Analysis from Desktop to
Locally Hosted Server” on page 3-17.

• Start a remote analysis with MATLAB scripts.

See “Run Analysis on Server”.

Submit Analysis Jobs from Multiple Releases of Polyspace
If you upgrade to a newer release of Polyspace products, you can continue to submit jobs
from both the older and the new releases. For instance, suppose that you were using the
R2019a release of Polyspace products and MATLAB Parallel Server. When you upgrade to
the R2019b releases of the two sets of products, you can continue to submit jobs from the
older releases.

The setup for handling multiple releases of Polyspace, for instance, R2019a and R2019b,
looks like this:

 Install Products for Submitting Polyspace Analysis from Desktops to Remote Server

2-15

To support submissions from multiple releases with a single MATLAB Parallel Server
cluster, you have to link the various installations of Polyspace products and MATLAB
Parallel Server. Of the links shown in the preceding figure, the links numbered 1, 2 and 5
are part of a regular server-client installation using all products from the same release. To
create all the links, do these steps:

1 In the R2019b installation of the Polyspace desktop products, open the user interface
and select Tools > Preferences. Specify the computer that acts as the head node of
the R2019b MATLAB Parallel Server cluster, as described earlier.

If you are able to submit jobs from R2019b Polyspace desktop products, you have
already done this step.

2 In the R2019b installation of the MATLAB Parallel Server products, edit the
mjs_polyspace.conf file to point to the R2019b installation of the Polyspace
Server products, as described earlier.

If your R2019b installation of MATLAB Parallel Server can run an analysis using
R2019b Polyspace Server products, you have already done this step.

3 In the R2019a installation of the Polyspace desktop products, open the user interface
and select Tools > Preferences. Specify the computer that acts as the head node of
the R2019b MATLAB Parallel Server cluster.

2 Install Polyspace Code Prover

2-16

If you install the R2019b version of MATLAB Parallel Server on the same computer as
the R2019a version, you have already done this step. Otherwise, this step might be
new in the multi-release workflow.

4 In the R2019b installation of the MATLAB Parallel Server products, edit the file
mjs_def.bat or mjs_def.sh (located in matlabroot\toolbox\parallel\bin\)
to refer to the earlier release. Find the line with MJS_ADDITIONAL_MATLABROOTS
and edit it as follows. To edit and save the file, you have to open your editor in
administrator mode.

set MJS_ADDITIONAL_MATLABROOTS=othermatlabroot

Here, othermatlabroot is the installation path of the MATLAB Parallel Server
installation from the earlier release, for instance:

C:\Program Files\MATLAB\R2019a

This step is new in the multi-release workflow.
5 In the R2019a installation of the MATLAB Parallel Server products, edit the

mjs_polyspace.conf file to point to the R2019a installation of the Polyspace
Server products, as described earlier.

If your R2019a installation of MATLAB Parallel Server can run an analysis using
R2019a Polyspace Server products, you have already done this step.

See Also

Related Examples
• “Set Up Polyspace Metrics” on page 2-18
• “Send Polyspace Analysis from Desktop to Remote Servers”
• “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”
• “Send Code Prover Analysis from Desktop to Locally Hosted Server” on page 3-17
• “Job Manager Cannot Write to Database”
• “Integrate MATLAB with Third-Party Schedulers” (MATLAB Parallel Server)
• “Troubleshoot Common Problems” (MATLAB Parallel Server)

 See Also

2-17

Set Up Polyspace Metrics

Note For easier collaborative reviews, use Polyspace Code Prover Access . In addition to
a more intuitive web dashboard, with Polyspace Access you can:

• Review and justify results directly from your web browser.
• Integrate a defect-tracking tool such as Jira with the web interface and create tickets

to track Polyspace findings.
• Share analysis results using web links.

For more information, see the Polyspace Code Prover Access documentation.

Polyspace Metrics is a web dashboard that generates code quality metrics from your
verification results. Using this dashboard, you can:

• Provide your management a high-level overview of your code quality.
• Compare your code quality against predefined standards.
• Establish a process where you review in detail only those results that fail to meet

standards.
• Track improvements or regression in code quality over time.

This topic shows how to set up a Polyspace Metrics server to store Polyspace results.

Requirements for Polyspace Metrics
You can use Polyspace Metrics to:

• Store Polyspace results.
• Evaluate and monitor software quality metrics based on those results.

You require a computer that acts as a server and hosts the Polyspace Metrics interface.
Results from several client desktops can be uploaded to the Polyspace Metrics interface.

This table lists the requirements for Polyspace Metrics.

2 Install Polyspace Code Prover

2-18

Location Task Requirements
Client desktops The client

desktops:

• Run Polyspace
and upload
results to the
server.

• Download
results from
the server for
detailed
review.

You must install Polyspace Bug Finder
and/or Polyspace Code Prover.

Server The server:

• Runs
Polyspace
Metrics
service.

• Hosts results
uploaded from
server and
computes and
displays
quality
metrics. You
can load the
server
address and
view the
metrics.

You must install Polyspace Bug Finder
and/or Polyspace Code Prover.

However, you do not require activation to
run the Polyspace Metrics service.

You cannot merge two different Polyspace metrics databases. However, if you install a
newer version of Polyspace on top of an older version, Polyspace Metrics automatically
updates the database to the newest version.

 Set Up Polyspace Metrics

2-19

Configure and Start Polyspace Metrics Server
This section shows you how to start the host server for Polyspace Metrics. After you
complete this step, you must also configure the client side settings so that the user
interface on the Polyspace desktops can interact with the Metrics server.

1 In the Polyspace user interface, select Tools > Metrics Server Settings.

Alternatively, run the following command:

polyspaceroot\polyspace\bin\polyspace-server-settings.exe

Here, polyspaceroot is the Polyspace installation folder, for instance, C:\Program
Files\Polyspace\R2019a.

2 Under Polyspace Metrics Settings, specify this information:

• User name used to start the service — Your user name.
• Password — Your password (Windows only).
• Communication port — Polyspace communication port number (default 12427).

This number must be the same as the communication port number specified in the
Polyspace Interface preferences. See “Configure Client Side” on page 2-21.

• Folder where analysis data will be stored — Results repository for Polyspace
Metrics server.

If you want to start Polyspace Metrics as a service, select Install as service. If you
select this option, the Polyspace Metrics service starts automatically each time you
restart the computer. You do not have to start the Metrics service explicitly. However,
when you use the option, starting the server might require additional privileges, for
instance, root privileges in Linux.

3 To start the Polyspace Metrics server, click Start Server.

The software stores the information that you specify through the Metrics Server Settings
window in the following file:

• On a Windows system, \%APPDATA%\Polyspace_RLDatas\polyspace.conf
\polyspace.conf.

• On a Linux system, /etc/Polyspace/polyspace.conf

You can edit this file directly for specific purposes. For instance, Polyspace Metrics uses
Tomcat 8.0.22 to run the Metrics user interface. To specify your own version of Tomcat,
add the following line to this file:

2 Install Polyspace Code Prover

2-20

tomcat_install_dir = tomcat_path

Here, tomcat_path is the path to your Tomcat installation (on Windows, it is the value of
the environment variable CATALINA_HOME).

To start Polyspace Metrics web server at the command line, use one of these commands:

• Windows: perl polyspaceroot\toolbox\polyspace\psdistcomp\bin\setup-
polyspace-cluster.pl

• Linux: ./polyspaceroot/toolbox/polyspace/psdistcomp/bin/setup-
polyspace-cluster

Here, polyspaceroot is the Polyspace installation folder, for instance, C:\Program
Files\Polyspace\R2019a. For more help in using the commands, use the -h option.

Configure Client Side
Once you have set up your Polyspace metrics server, you must set the client-side settings
so that the Polyspace interface can communicate with your Metrics server.

1 Select Tools > Preferences.
2 Click the Server Configuration tab.
3 Select Use Polyspace Metrics.

Specify this information:

a If you want Polyspace to detect a server on the network that uses port 12427
(default port number), click Automatically detect the Polyspace Metrics
Server.

b If you use a different port number for your Metrics server or you want to specify
the server name, click Use the following server and port. Fill in your server
name or IP address, and communication port number.

You must specify the same communication port number for all clients that use
the Polyspace Metrics service.

4 Under the Polyspace Metrics web interface configuration section:

a Specify a Port used to download results, default is 12428. If you change this
port number, you must also change it in on the server side.

 Set Up Polyspace Metrics

2-21

b Specify which protocol to use HTTP or HTTPS. If you select HTTPS for your web
protocol, there are additional steps to set up the Metrics web server for HTTPS
on page 2-22.

c Specify a web server port number for your chosen protocol. Default port
numbers are:

• HTTP — 8080
• HTTPS — 8443

If you change the port number from the default, you must configure the same
port number for the Polyspace Metrics server. See “Configure and Start
Polyspace Metrics Server” on page 2-20.

5 Under the Upload and download settings section:

• Upload settings — After you review results from the Metrics repository, you can
upload your comments and justifications back to the repository using Metrics >
Upload to Metrics.

If you want Polyspace to automatically upload your justifications to Polyspace
Metrics when you save, select Upload justifications automatically in the
Polyspace Metrics repository....

• Download settings — In Polyspace Metrics, when you click an item to view,
Polyspace downloads your results and opens them in the Polyspace environment.
Select where to download your Polyspace Metrics results, either:

• To the project folder, or, if a project does not exist, a default folder.
• Ask every time where to download results.

To view Polyspace Metrics, in the address bar of your web browser, enter:

protocol://ServerName:WSPN

• protocol is http or https.
• ServerName is the name or IP address of your Polyspace Metrics server.
• WSPN is the web server port number, the default is 8080 or 8443.

Configure Web Server for HTTPS
By default, the data transfer between the Polyspace desktop products and the Polyspace
Metrics web interface is not encrypted. You can enable HTTPS for the web protocol,

2 Install Polyspace Code Prover

2-22

which encrypts the data transfer. To set up HTTPS, you must change the server
configuration and set up a keystore for the HTTPS certificate.

Before you start the following procedure, you must complete “Configure and Start
Polyspace Metrics Server” on page 2-20 and “Configure Client Side” on page 2-21.

To configure HTTPS access to Polyspace Metrics:

1 Open the Metrics Server Settings dialog box as stated in “Configure and Start
Polyspace Metrics Server” on page 2-20.

2 Click Stop Server. The software stops the Polyspace Metrics services. Now, you can
make the changes required for HTTPS.

3 Open the file metricsRootFolder\tomcat\conf\server.xml in a text editor.
Here, metricsRootFolder is the name that you specified for Folder where
analysis data will be stored. Look for the following text:

<!-
 <Connector port="8443" SSLEnabled="true" scheme="https"
 secure="true" clientAuth="false" sslProtocol="TLS"
 keystoreFile="<datadir>/.keystore" keystorePass="polyspace"/>
->

If the text is not in your server.xml file:

a Delete the entire ..\conf\ folder.
b In the Metrics Server Settings dialog box, restart services by clicking Start

Server.
c Click Stop Server to stop the services again so that you can finish setting up the

server for HTTPS.

The conf folder is regenerated, including the server.xml file. The file now contains
the text required to configure the HTTPS web server.

4 Follow the commented-out instructions in server.xml to create a keystore for the
HTTPS certificate.

5 In the Metrics Server Settings dialog box, to restart the Polyspace Metrics service
with the changes, click Start Server.

To view Polyspace Metrics, in the address bar of your web browser, enter:

https://ServerName:WSPN

 Set Up Polyspace Metrics

2-23

• ServerName is the name or IP address of the Polyspace Metrics server.
• WSPN is the web server port number.

Change Web Server Port Number for Metrics Server
If you change or specify a non-default value for the web server port number of your
Polyspace Code Prover client, you must manually configure the same value for your
Polyspace Metrics server.

1 Select Metrics > Metrics Server Settings.
2 In the Metrics Server Settings dialog box, select Stop Server to stop the Polyspace

Metrics server daemon.
3 In metricsRootFolder\tomcat\conf\server.xml, edit the port attribute of the

Connector element for your web server protocol. Here, metricsRootFolder is the
name that you specified for Folder where analysis data will be stored when
setting up Polyspace Metrics.

• For HTTP:

<Connector port="8080"/>
• For HTTPS:

 <Connector port="8443" SSLEnabled="true" scheme="https"
 secure="true" clientAuth="false" sslProtocol="TLS"
 keystoreFile="<datadir>/.keystore" keystorePass="polyspace"/>

4 In the same file, edit the port attribute of the Server element for your web server
protocol.

<Server port="8005" shutdown="SHUTDOWN">
5 In the Metrics Server Settings dialog box, select Start Server to restart the server

with the new port numbers.
6 On the Polyspace toolbar, select Tools > Preferences.
7 In the Server Configuration tab, change the Web server port number to match

your new value for the port attribute in the Connector element.

2 Install Polyspace Code Prover

2-24

See Also

Related Examples
• “Generate Code Quality Metrics”

 See Also

2-25

Get Started with Polyspace Code
Prover

• “Compiler Requirements” on page 3-2
• “Run Polyspace Code Prover on Desktop” on page 3-3
• “Review Polyspace Code Prover Analysis Results” on page 3-11
• “Send Code Prover Analysis from Desktop to Locally Hosted Server” on page 3-17

3

Compiler Requirements
Polyspace fully supports the most common compilers used to develop embedded
applications. If you compile your code with one of these compilers, you can run analysis
simply by specifying your compiler and target processor. See the full list of compilers on
the reference page for option Compiler (-compiler).

If you do not compile your code using a supported compiler, you can specify a generic
compiler. If you face compilation errors from compiler-specific language extensions, you
can explicitly define these extensions to work around the errors. Use the options
Preprocessor definitions (-D) and Command/script to apply to
preprocessed files (-post-preprocessing-command).

3 Get Started with Polyspace Code Prover

3-2

Run Polyspace Code Prover on Desktop
Polyspace Code Prover is a sound static analysis tool that proves the absence of overflow,
divide-by-zero, out-of-bounds array access, and certain other run-time errors in C and C+
+ source code. A Code Prover analysis produces results without requiring program
execution, code instrumentation, or test cases. Code Prover uses semantic analysis and
abstract interpretation based on formal methods to determine control flow and data flow
in the code. You can use Code Prover on handwritten code, generated code, or a
combination of the two. In the analysis results, each operation is color-coded to indicate
whether it is free of run-time errors, proven to fail, unreachable, or unproven.

You can run Code Prover on C/C++ code from the Polyspace user interface, in a
supported development environment (IDE) such as Eclipse or using scripts. See:

• “Run Polyspace in User Interface” on page 3-4

If this is your first time using Polyspace, you might want to start from the Polyspace
user interface. You can get help from features such as a project setup wizard, assisted
configuration and summarized analysis log.

• “Run Polyspace on Windows or Linux Command Line” on page 3-7

Once you set up a project in the Polyspace user interface and complete a few trial
runs, you can export the configuration to scripts that you run automatically or on-
demand. You can also run a Polyspace analysis directly from the command line in your
operating system. You can then save the commands in batch files (Windows) or shell
scripts (Linux) for later runs. If you are running Polyspace Server products using
continuous integration tools such as Jenkins, you can reuse your scripts from the
Polyspace desktop products.

• “Run Polyspace in Eclipse” on page 3-8

Once you are familiar with running Polyspace from the command line, you can create
menu items in your IDE that run your scripts and launch a Polyspace analysis in one
click. In Eclipse and Eclipse-based IDEs, you can install a Polyspace plugin that does
not require any additional setup at all. When you run Polyspace from the Eclipse
plugin, the analysis configuration is created directly from your Eclipse project.

• “Run Polyspace in MATLAB” on page 3-8

If you have a MATLAB installation, it is particularly easy to write scripts to run a
Polyspace analysis. You get all the benefits of scripting in the MATLAB environment,

 Run Polyspace Code Prover on Desktop

3-3

for instance, automatic help on function syntaxes. After analysis, you can create your
own visualization of the results using MATLAB graphics and visualization tools.

To follow the steps in this tutorial, copy the files example.c and include.h from
polyspaceroot\polyspace\examples\cxx\Code_Prover_Example\sources to
another folder. Here, polyspaceroot is the Polyspace installation folder, for instance,
C:\Program Files\Polyspace\R2019a.

Run Polyspace in User Interface
Open Polyspace User Interface

Double-click the polyspace executable in polyspaceroot\polyspace\bin. Here,
polyspaceroot is the Polyspace installation folder, for instance, C:\Program Files
\Polyspace\R2019a. See also “Installation Folder” on page 1-14.

If you set up a shortcut to Polyspace on your desktop or the Start menu in Windows,
double-click the shortcut.

Add Source Files

To run a verification, you have to create a new Polyspace project. A Polyspace project
points to source and include folders on your file system.

On the left of the Start Page pane, click Start a new project. Alternatively, select File >
New Project.

After you provide a project name, on the next screens:

• Add your source folder.

In this tutorial, add the path to the folder in which you saved the file example.c. Click
Next.

• Add your include folder.

In this tutorial, add the path to the folder in which you saved the file include.h. This
folder can be the same as the previous folder. Click Finish.

3 Get Started with Polyspace Code Prover

3-4

After you finish adding your source and include folders, you see a new project on the
Project Browser pane. Your source folders are copied to the first module in the project.
You can right-click a project to add more folders later. If you add folders later, you must
explicitly copy them to a module.

Configure and Run Polyspace

You can change the default options associated with a Polyspace analysis.

 Run Polyspace Code Prover on Desktop

3-5

Click the Configuration node in your project module. On the Configuration pane,
change options as needed. For instance, on the Coding Rules & Code Metrics node,
select Check MISRA C:2004.

For more information, see the tooltip on each option. Click the More help link for
context-sensitive help on the options.

To start verification, click Run Code Prover in the top toolbar. If the button indicates
Bug Finder, click the arrow beside the button to switch to Code Prover.

Follow the progress of verification on the Output Summary window. After the
verification, the results open automatically.

3 Get Started with Polyspace Code Prover

3-6

Additional Information

See:

• “Add Source Files for Analysis in Polyspace User Interface”
• “Run Polyspace Analysis on Desktop”

Run Polyspace on Windows or Linux Command Line
You can run Code Prover from the Windows or Linux command line with batch (.bat)
files or shell (.sh) scripts.

Use the polyspace-code-prover command to run a verification.

To save typing the full path to the command, add the path polyspaceroot\polyspace
\bin to the Path environment variable on your operating system. Here, polyspaceroot
is the Polyspace installation folder, for instance, C:\Program Files\Polyspace
\R2019a.

Navigate to the folder where you saved the files (using cd). Enter the following:

polyspace-code-prover -sources example.c -I . -results-dir . -main-generator

Here, . indicates the current folder. The options used are:

• -sources: Specify comma-separated source files.
• -I: Specify path to include folder. Use the -I flag each time you want to add a

separate include folder.
• -results-dir: Specify path where Polyspace Code Prover results will be saved.
• Verify module or library (-main-generator): Specify that a main function

must be generated if not found in the source files

After verification, the results are saved in the file ps_results.pscp. You can open this
file from the Polyspace user interface. For instance, enter the following:

polyspace ps_results.pscp

Instead of specifying comma-separated sources directly on the command line, you can list
the sources in a text file (one file per line). Use the option -sources-list-file to
specify this text file.

 Run Polyspace Code Prover on Desktop

3-7

Additional Information

See:

• “Run Polyspace Analysis from Command Line”
• polyspace-code-prover

Run Polyspace in Eclipse
If you develop code in Eclipse or an Eclipse-based IDE, you can run Code Prover directly
from your IDE.

After installing the Eclipse plugin on page 2-2, you can run Polyspace directly on the files
in your Eclipse projects.

In the Project Explorer pane in Eclipse, select your project. To use Code Prover for the
analysis, select Polyspace > Code Prover. To start the analysis, select Polyspace > Run
(Ctrl + R).

After analysis, the results open automatically in Eclipse.

Additional Information

See “Run Polyspace Analysis in Eclipse”.

Run Polyspace in MATLAB
Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

To run an analysis, use a polyspace.Project object. The object has two properties:

• Configuration: Specify the analysis options such as sources, includes, compiler and
results folder using this property.

3 Get Started with Polyspace Code Prover

3-8

• Results: After analysis, read the analysis results to a MATLAB table using this
property.

To run the analysis, use the run method of this object.

To run Polyspace on the example file example.c in polyspaceroot\polyspace
\examples\cxx\Code_Prover_Examples\sources, enter the following at the
MATLAB command prompt.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'example.c')};
proj.Configuration.EnvironmentSettings.IncludeFolders = {fullfile(polyspaceroot,...
 'polyspace', 'examples', 'cxx', 'Code_Prover_Example', 'sources')}
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodeProverVerification.MainGenerator = true;

% Run analysis
cpStatus = proj.run('codeProver');

% Read results
cpSummary = proj.Results.getSummary('runtime');
cpResults = proj.Results.getResults('readable');

After verification, the results are saved in the file ps_results.pscp. You can open this
file from the Polyspace user interface. For instance, enter the following:

resultsFile = fullfile(proj.Configuration.ResultsDir,'ps_results.pscp');
polyspaceCodeProver(resultsFile)

Additional Information

See:

• “Run Polyspace Analysis by Using MATLAB Scripts”
• polyspace.Project
• polyspace.Project.Configuration Properties

 Run Polyspace Code Prover on Desktop

3-9

See Also

Related Examples
• “Review Polyspace Code Prover Analysis Results” on page 3-11
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

3 Get Started with Polyspace Code Prover

3-10

Review Polyspace Code Prover Analysis Results
Polyspace Code Prover checks C/C++ code exhaustively and proves the absence of
certain types of run-time errors (static analysis or verification). Whatever means you use
for running the analysis, afterwards, you open the results in the Polyspace user interface
(or if you ran the analysis in Eclipse, the results open in Eclipse).

To follow the steps in this tutorial, run Polyspace using the steps in “Run Polyspace Code
Prover on Desktop” on page 3-3. Alternatively, in the Polyspace user interface, open
example results using Help > Examples > Code_Prover_Example.psprj. If you have
loaded the example results earlier and made some changes, to load a fresh copy, select
Help > Examples > Restore Default Examples.

Interpret Results
Review each Polyspace result. Find the root cause of the issue.

Start from the list of results on the Results List pane.

• If the Results List pane covers the entire window, select Window > Reset Layout >
Results Review.

• If you do not see a flat list of results, but instead see them grouped, from the list,
select None.

Click the Family column header to sort the results based on how critical they are. Select
the red Illegally dereferenced pointer check in the file example.c. A red check
indicates that the error happens on all execution paths considered in the analysis.

 Review Polyspace Code Prover Analysis Results

3-11

See the source code on the Source pane and further information about the result on the
Result Details pane.

For the Illegally dereferenced pointer result, the message on the Result Details pane
indicates that the pointer p has an allowed buffer of 400 bytes. It points to a location that
begins at 400 bytes from the beginning of the buffer and points to a data type of 4 bytes.

To investigate further and find the root cause of the issue, right-click the variable p on the
Source pane and select Search For All References. Click each search result to navigate
to the corresponding location on the source code. At each location, place your cursor on
the variable p to see a tooltip that describes the variable value at that point in the code.

3 Get Started with Polyspace Code Prover

3-12

You see that the pointer variable p is initialized to a 100-element int array. The pointer
traverses the array in a for loop with 100 iterations and points to the end of the array. On
the line with the red Illegally dereferenced pointer check, this pointer is dereferenced,
resulting in dereference of a memory location outside the array.

Additional Information

See:

• “Interpret Polyspace Code Prover Results”
• “Code Prover Result and Source Code Colors”
• “Polyspace Code Prover Results”

Address Results Through Bug Fix or Comments
Once you understand the root cause of a Polyspace finding, you can fix your code.
Otherwise, add comments to your Polyspace results to fix the code later or to justify the
result. You can use the comments to keep track of your review progress.

Right-click the variable p on the Source pane. Select Open Editor. The code opens in a
text editor. Fix the issue. For instance, you can make the pointer point to the beginning of
the array after the for loop. Changes to the code are highlighted below.

 Review Polyspace Code Prover Analysis Results

3-13

...
int i, *p = array;

for (i = 0; i < 100; i++) {
 *p = 0;
 p++;
}

p = array;

if (get_bus_status() > 0)
...

If you rerun the analysis, you do not see the red Illegally dereferenced pointer check.

Alternatively, if you do not want to fix the defect immediately, assign a status To
investigate to the result. Optionally, add comments with further explanation.

If you assign a status No action planned, the result does not appear in subsequent runs
on the same project.

3 Get Started with Polyspace Code Prover

3-14

Additional Information

See:

• “Address Polyspace Results Through Bug Fixes or Justifications”
• “Annotate Code and Hide Known or Acceptable Results”

Manage Results
When you open the results of a Code Prover analysis, you see a list of run-time checks,
coding rule violations or other results. To organize your review, you can narrow down the
list or group results by file or result type.

For instance, you can:

• Review only red and critical orange checks.

Click the Family column header to sort checks by color. Alternatively, you can filter

out results other than red and orange checks. To begin filtering, click the icon on
the column header.

 Review Polyspace Code Prover Analysis Results

3-15

You can review only the path-related orange checks because they are likely to be more
critical. To filter out other checks, use the filters on the Information column. Clear
the All filter and then select the filter Origin: Path related issue.

• Review only the new results since the last analysis.

On the Results List pane toolbar, click the New button.
• Review results in certain files or functions.

On the Results List pane toolbar, from the list, select File.

Additional Information

See:

• “Filter and Group Results”
• “Prioritize Check Review”

3 Get Started with Polyspace Code Prover

3-16

Send Code Prover Analysis from Desktop to Locally
Hosted Server

You can perform a Polyspace analysis locally on your desktop or offload the analysis to
one or more dedicated servers. This topic shows a simple server-client configuration for
offloading the Polyspace analysis. In this configuration, the same computer acts as a
client that submits a Polyspace analysis and a server that runs the analysis.

You can extend this tutorial to more complex configurations. For full setup and workflow
instructions, see related links below.

Client-Server Workflow for Running Bug Finder Analysis
After the initial setup, you can submit a Polyspace analysis from a client desktop to a
server. The client-server workflow happens in three steps. All three steps can be
performed on the same computer or three different computers. This tutorial uses the
same computer for the entire workflow.

1 Client node: You specify Polyspace analysis options and start the analysis on the
client desktop. The initial phase of analysis upto compilation runs on the desktop.
After compilation, the analysis job is submitted to the server.

You require the Polyspace desktop product, Polyspace Bug Finder on the computer
that acts as the client node.

2 Head node: The server consists of a head node and several worker nodes. The head
node uses a job scheduler to manage submissions from multiple client desktops. The
jobs are then distributed to the worker nodes as they become available.

You require the product MATLAB Parallel Server on the computer that acts as the
head node.

3 Worker nodes: When a worker becomes available, the job scheduler assigns the
analysis to the worker. The Polyspace analysis runs on the worker and the results are
downloaded back to the client desktop for review.

You require the product MATLAB Parallel Server on the computers that act as worker
nodes. You also require the Polyspace server products, Polyspace Bug Finder Server
and Polyspace Code Prover Server, to run the analysis.

 Send Code Prover Analysis from Desktop to Locally Hosted Server

3-17

See also “Install Products for Submitting Polyspace Analysis from Desktops to Remote
Server” on page 2-5.

Prerequisites
This tutorial uses the same computer as client and server. You must install the following
on the computer:

• Client-side product: Polyspace Bug Finder
• Server-side products: MATLAB Parallel Server, Polyspace Bug Finder Server and

Polyspace Code Prover Server.

For more information, see “Install Products for Submitting Polyspace Analysis from
Desktops to Remote Server” on page 2-5.

3 Get Started with Polyspace Code Prover

3-18

You must know the host name of your computer. For instance, in Windows, open a
command-line terminal and enter:

hostname

Configure and Start Server

Stop Previous Services

If you started the services of MATLAB Parallel Server previously, make sure that you have
stopped all services. In particular, you might have to:

• Check your temporary folder, for instance, C:\Windows\Temp in Windows, and
remove the MDCE folder if it exists.

• Stop all services explicitly.

Open a command-line terminal. Navigate to matlabroot\toolbox\parallel\bin
(using cd) and enter the following:

mjs uninstall -clean

Here, matlabroot is the MATLAB Parallel Server installation folder, for instance,
C:\Program Files\MATLAB\R2019a.

If this is the first time you are starting the services, you do not have to do these steps.

Configure mjs Service Settings

Before starting services, you have to configure the mjs service settings. Navigate to
matlabroot\toolbox\parallel\bin, where matlabroot is the MATLAB Parallel
Server installation folder, for instance, C:\Program Files\MATLAB\R2019a. Modify
these two files. To edit and save these files, you have to open your editor in administrator
mode.

• mjs_def.bat (Windows) or mjs_def.sh (Linux)

 Send Code Prover Analysis from Desktop to Locally Hosted Server

3-19

Read the instructions in the file and uncomment the lines as needed. At a minimum,
you might have to uncomment these lines:

• Hostname:

REM set HOSTNAME=myHostName

in Windows or

#HOSTNAME=`hostname -f`

in Linux. Remove the REM or # and explicitly specify your computer host name.
• Security level:

REM set SECURITY_LEVEL=

in Windows or

#SECURITY_LEVEL=""

in Linux. Remove the REM or # and explicitly specify a security level.

Otherwise, you might see an error later when starting the job scheduler.
• mjs_polyspace.conf

Modify and uncomment the line that refers to a Polyspace server product root. The
line should refer to the release number and root folder of your Polyspace server
product installation. For instance, if the R2019a release of Polyspace Code Prover
Server is installed in the root folder C:\Program Files\Polyspace Server
\R2019a, modify the line to:

POLYSPACE_SERVER_ROOT=C:\Program Files\Polyspace Server\R2019a

Otherwise, the MATLAB Parallel Server installation cannot locate the Polyspace Code
Prover Server installation to run the analysis.

Start Services

Start the mjs services and assign the current computer as both the head node and a
worker node.

3 Get Started with Polyspace Code Prover

3-20

Navigate to matlabroot\toolbox\parallel\bin, where matlabroot is the MATLAB
Parallel Server installation folder, for instance, C:\Program Files\MATLAB\R2019a.
Run these commands (directly at the command line or using scripts):

mjs install
mjs start
startjobmanager -name JobScheduler -remotehost hostname -v
startworker -jobmanagerhost hostname -jobmanager JobScheduler
 -remotehost hostname -v

Here, hostname is the host name of your computer. This is the host name that you
specified in the file mjs_def.bat (Windows) or mjs_def.sh (Linux).

Instead of the command line, you can also start the services from the Admin Center
interface. See “Install Products for Submitting Polyspace Analysis from Desktops to
Remote Server” on page 2-5.

For more information on the commands, see “Configure Advanced Options for MATLAB
Job Scheduler Integration” (MATLAB Parallel Server).

Configure Client
Open the user interface of the desktop product, Polyspace Bug Finder (or Polyspace Code
Prover). Navigate to polyspaceroot\polyspace\bin, where polyspaceroot is the
Polyspace desktop product installation folder, for instance, C:\Program Files
\Polyspace\R2019a and double-click the polyspace executable.

Select Tools > Preferences. On the Server configuration tab, enter the host name of
your computer for Job scheduler host name.

 Send Code Prover Analysis from Desktop to Locally Hosted Server

3-21

You are now set up for the server-client workflow.

Send Analysis from Client to Server
Run Code Prover on the file example.c provided with your installation.

Before running these steps, to avoid entering full paths to the Polyspace executables, add
the path polyspaceroot\polyspace\bin to the PATH environment variable on your
operating system. Here polyspaceroot is the Polyspace desktop product installation
folder, for instance, C:\Program Files\Polyspace\R2019a. To check if the path is
already added, open a command line terminal and enter:

polyspace-code-prover -h

If the path to the command is already added, you see the full list of options.

1 Copy the file example.c and all header files from polyspaceroot\polyspace
\examples\cxx\Code_Prover_Example\sources to a folder with write
permissions.

2 Open a command terminal. Navigate to the folder where you saved example.c and
enter the following:

polyspace-code-prover -sources example.c -I . -main-generator
 -results-dir . -batch -scheduler hostname

Here, hostname is the host name of your computer. To run a Bug Finder analysis, use
polyspace-bug-finder instead of polyspace-code-prover. Note that you can

3 Get Started with Polyspace Code Prover

3-22

run the polyspace-code-prover command with a Polyspace Bug Finder license
only, provided you use the -batch option.

After compilation, the analysis is submitted to a server and returns a job ID.
3 See the status of the current job.

polyspace-jobs-manager listjobs -scheduler hostname

You can locate the current job using the job ID.
4 Once the job is completed, you can explicitly download the results.

polyspace-jobs-manager download -job jobID -results-folder .
 -scheduler hostname

Here, jobID is the job ID from the submission.

The results folder contains the downloaded results file (with extension .pscp). Open the
results in the user interface of the desktop product, Polyspace Bug Finder.

See Also

More About
• “Install Products for Submitting Polyspace Analysis from Desktops to Remote

Server” on page 2-5
• “Send Polyspace Analysis from Desktop to Remote Servers”
• “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”

 See Also

3-23

Polyspace Bug Finder and
Polyspace Code Prover

4

Choose Between Polyspace Bug Finder and Polyspace
Code Prover

Polyspace Bug Finder and Polyspace Code Prover detect run-time errors through static
analysis. Though the products have a similar user interface and the mathematics
underlying the analysis can sometimes be the same, the goals of the two products are
different.

Bug Finder quickly analyzes your code and detects many types of defects. Code Prover
checks every operation in your code for a set of possible run-time errors and tries to
prove the absence of the error for all execution paths2. For instance, for every division in
your code, a Code Prover analysis tries to prove that the denominator cannot be zero. Bug
Finder does not perform such exhaustive verification. For instance, Bug Finder also
checks for a division by zero error, but it might not find all operations that can cause the
error.

The two products involve differences in setup, analysis and results review, because of this
difference in objectives. In the following sections, we highlight the primary differences
between a Bug Finder and a Code Prover analysis (also known as verification). Depending
on your requirements, you can incorporate one or both kinds of analyses at appropriate
points in your software development life cycle.

How Bug Finder and Code Prover Complement Each Other
• “Overview” on page 4-3
• “Faster Analysis with Bug Finder” on page 4-3
• “More Exhaustive Verification with Code Prover” on page 4-3
• “More Specific Defect Types with Bug Finder” on page 4-4
• “Easier Setup Process with Bug Finder” on page 4-5
• “Fewer Runs for Clean Code with Bug Finder” on page 4-5
• “Results in Real Time with Bug Finder” on page 4-6
• “More Rigorous Data and Control Flow Analysis with Code Prover” on page 4-6
• “Few False Positives with Bug Finder” on page 4-8

2. For each operation in your code, Code Prover considers all execution paths leading to the operation that
do not have a previous error. If an execution path contains an error prior to the operation, Code Prover
does not consider it. See “Code Prover Analysis Following Red and Orange Checks”.

4 Polyspace Bug Finder and Polyspace Code Prover

4-2

• “Zero False Negatives with Code Prover” on page 4-8

Overview

Use both Bug Finder and Code Prover regularly in your development process. The
products provide a unique set of capabilities and complement each other. For possible
ways to use the products together, see “Workflow Using Both Bug Finder and Code
Prover” on page 4-8.

This table provides an overview of how the products complement each other. For details,
see the sections below.

Feature Bug Finder Code Prover
Number of checkers 262 28 (Critical subset)
Depth of analysis Fast.

For instance:

• Faster analysis.
• Easier set up and review.
• Fewer runs for clean

code.
• Results in real time.

Exhaustive.

For instance:

• All operations of a type
checked for certain
critical errors.

• More rigorous data and
control flow analysis.

Reporting criteria Probable defects Proven findings
Bug finding criteria Few false positives Zero false negatives

Faster Analysis with Bug Finder

How much faster the Bug Finder analysis is depends on the size of the application. The
Bug Finder analysis time increases linearly with the size of the application. The Code
Prover verification time increases at a rate faster than linear.

One possible workflow is to run Code Prover to analyze modules or libraries for
robustness against certain errors and run Bug Finder at integration stage. Bug Finder
analysis on large code bases can be completed in a much shorter time, and also find
integration defects such as Declaration mismatch and Data race.

More Exhaustive Verification with Code Prover

Code Prover tries to prove the absence of:

 Choose Between Polyspace Bug Finder and Polyspace Code Prover

4-3

• Division by Zero error on every division or modulus operation
• Out of Bounds Array Index error on every array access
• Non-initialized Variable error on every variable read
• Overflow error on every operation that can overflow

and so on.

For each operation:

• If Code Prover can prove the absence of the error for all execution paths, it highlights
the operation in green.

• If Code Prover can prove the presence of a definite error for all execution paths, it
highlights the operation in red.

• If Code Prover cannot prove the absence of an error or presence of a definite error, it
highlights the operation in orange. This small percentage of orange checks indicate
operations that you must review carefully, through visual inspection or testing. The
orange checks often indicate hidden vulnerabilities. For instance, the operation might
be safe in the current context but fail when reused in another context.

You can use information provided in the Polyspace user interface to diagnose the
checks. See “More Rigorous Data and Control Flow Analysis with Code Prover” on
page 4-6. You can also provide contextual information to reduce unproven code even
further, for instance, constrain input ranges externally.

Bug Finder does not aim for exhaustive analysis. It tries to detect as many bugs as
possible and reduce false positives. For critical software components, running a bug
finding tool is not sufficient because despite fixing all defects found in the analysis, you
can still have errors during code execution (false negatives). After running Code Prover
on your code and addressing the issues found, you can expect the quality of your code to
be much higher. See “Zero False Negatives with Code Prover” on page 4-8.

More Specific Defect Types with Bug Finder

Code Prover checks for types of run-time errors where it is possible to mathematically
prove the absence of the error. In addition to detecting errors whose absence can be
mathematically proven, Bug Finder also detects other defects.

For instance, the statement if(a=b) is semantically correct according to the C language
standard, but often indicates an unintended assignment. Bug Finder detects such
unintended operations. Although Code Prover does not detect such unintended
operations, it can detect if an unintended operation causes other run-time errors.

4 Polyspace Bug Finder and Polyspace Code Prover

4-4

Examples of defects detected by Bug Finder but not by Code Prover include good practice
defects (Polyspace Bug Finder), resource management defects (Polyspace Bug Finder),
some programming defects (Polyspace Bug Finder), security defects (Polyspace Bug
Finder), and defects in C++ object oriented design (Polyspace Bug Finder).

For more information, see:

• “Defects” (Polyspace Bug Finder): List of defects that Bug Finder can detect.
• “Run-Time Checks”: List of run-time errors that Code Prover can detect.

Easier Setup Process with Bug Finder

Even if your code builds successfully in your compilation toolchain, it can fail in the
compilation phase of a Code Prover verification. The strict compilation in Code Prover is
related to its ability to prove the absence of certain run-time errors.

• Code Prover strictly follows the ANSI® C99 Standard, unless you explicitly use
analysis options that emulate your compiler.

To allow deviations from the ANSI C99 Standard, you must use the options. If you
create a Polyspace project from your build system, the options are automatically set.

• Code Prover does not allow linking errors that common compilers can permit.

Though your compiler permits linking errors such as mismatch in function signature
between compilation units, to avoid unexpected behavior at run time, you must fix the
errors.

For more information, see “Troubleshoot Compilation and Linking Errors”.

Bug Finder is less strict about certain compilation errors. Linking errors, such as
mismatch in function signature between different compilation units, can stop a Code
Prover verification but not a Bug Finder analysis. Therefore, you can run a Bug Finder
analysis with less setup effort. In Bug Finder, linking errors are often reported as a defect
after the analysis is complete.

Fewer Runs for Clean Code with Bug Finder

To guarantee absence of certain run-time errors, Code Prover follows strict rules once it
detects a run-time error in an operation. Once a run-time error occurs, the state of your
program is ill-defined and Code Prover cannot prove the absence of errors in subsequent
code. Therefore:

 Choose Between Polyspace Bug Finder and Polyspace Code Prover

4-5

• If Code Prover proves a definite error and displays a red check, it does not verify the
remaining code in the same block.

Exceptions include checks such as Overflow, where the analysis continues with the
result of overflow either truncated or wrapped around.

• If Code Prover suspects the presence of an error and displays an orange check, it
eliminates the path containing the error from consideration. For instance, if Code
Prover detects a Division by Zero error in the operation 1/x, in the subsequent
operation on x in that block, x cannot be zero.

• If Code Prover detects that a code block is unreachable and displays a gray check, it
does not detect errors in that block.

For more information, see “Code Prover Analysis Following Red and Orange Checks”.

Therefore, once you fix red and gray checks and rerun verification, you can find more
issues. You need to run verification several times and fix issues each time for completely
clean code. The situation is similar to dynamic testing. In dynamic testing, once you fix a
failure at a certain point in the code, you can uncover a new failure in subsequent code.

Bug Finder does not stop the entire analysis in a block after it finds a defect in that block.
Even with Bug Finder, you might have to run analysis several times to obtain completely
clean code. However, the number of runs required is fewer than Code Prover.

Results in Real Time with Bug Finder

Bug Finder shows some analysis results while the analysis is still running. You do not
have to wait until the end of the analysis to review the results.

Code Prover shows results only after the end of the verification. Once Bug Finder finds a
defect, it can display the defect. Code Prover has to prove the absence of errors on all
execution paths. Therefore, it cannot display results during analysis.

More Rigorous Data and Control Flow Analysis with Code Prover

For each operation in your code, Code Prover provides:

• Tooltips showing the range of values of each variable in the operation.

For a pointer, the tooltips show the variable that the pointer points to, along with the
variable values.

• Graphical representation of the function call sequence that leads to the operation.

4 Polyspace Bug Finder and Polyspace Code Prover

4-6

By using this range information and call graph, you can easily navigate the function call
hierarchy and understand how a variable acquires values that lead to an error. For
instance, for an Out of Bounds Array Index error, you can find where the index variable
is first assigned values that lead to the error.

When reviewing a result in Bug Finder, you also have supporting information to
understand the root cause of a defect. For instance, you have a traceback from where Bug
Finder found a defect to its root cause. However, in Code Prover, you have more complete
information, because the information helps you understand all execution paths in your
code.

Data Flow Analysis in Code Prover

 Choose Between Polyspace Bug Finder and Polyspace Code Prover

4-7

Control Flow Analysis in Code Prover

Few False Positives with Bug Finder

Bug Finder aims for few false positives, that is, results that you are not likely to fix. By
default, you are shown only the defects that are likely to be most meaningful for you.

Bug Finder also assigns an attribute called impact to the defect types based on the
criticality of the defect and the rate of false positives. You can choose to analyze your
code only for high-impact defects. You can also enable or disable a defect that you do not
want to review3.

Zero False Negatives with Code Prover

Code Prover aims for an exhaustive analysis. The software checks every operation that
can trigger specific types of error. If a code operation is green, it means that the
operation cannot cause those run-time errors that the software checked for4. In this way,
the software aims for zero false negatives.

If the software cannot prove the absence of an error, it highlights the suspect operation in
red or orange and requires you to review the operation.

Workflow Using Both Bug Finder and Code Prover
If you have both Bug Finder and Code Prover, based on the above differences, you can
deploy the two products appropriately in your software development workflow. For
instance:

3. You can also disable certain Code Prover defects related to non-initialization.
4. The Code Prover result holds only if you execute your code under the same conditions that you supplied

to Code Prover through the analysis options.

4 Polyspace Bug Finder and Polyspace Code Prover

4-8

• All developers in your organization can run Bug Finder on newly developed code. For
maintaining standards across your organization, you can deploy a common
configuration that looks only for specific defect types.

Code Prover can be deployed as part of your unit testing suite.
• You can run Code Prover only on critical components of your project, while running

Bug Finder on the entire project.
• You can run Code Prover on modules of code at the unit testing level, and run Bug

Finder when integrating the modules.

You can run Code Prover before unit testing. Code Prover exhaustively checks your
code and tries to prove the presence or absence of errors. Instead of writing unit tests
for your entire code, you can then write tests only for unproven code. Using Code
Prover before unit testing reduces your testing efforts drastically.

Depending on the nature of your software development workflow and available resources,
there are many other ways you can incorporate the two kinds of analysis. You can run
both products on your desktop during development or as part of automated testing on a
remote server. Note that it is easier to interpret and fix bugs closer to development. You
will benefit from using both products if you deploy them early and often in your
development process.

There are two important considerations if you are running both Bug Finder and Code
Prover on the same code.

• Both products can detect violations of coding rules such as MISRA C rules and JSF C+
+ rules.

However, if you want to detect MISRA C:2012 coding rule violations alone, use Bug
Finder. Bug Finder supports all the MISRA C:2012 coding rules. Code Prover does not
support a few rules.

• If a result is found in both a Bug Finder and Code Prover analysis, you can comment
on the Bug Finder result and import the comment to Code Prover.

For instance, most coding rule checkers are common to Bug Finder and Code Prover.
You can add comments to coding rule violations in Bug Finder and import the
comments to the same violations in Code Prover. To import comments, open your
result set and select Tools > Import Comments.

• You can use the same project for both Bug Finder and Code Prover analysis. The
following set of options are common between Bug Finder and Code Prover:

 Choose Between Polyspace Bug Finder and Polyspace Code Prover

4-9

• “Target and Compiler”
• “Macros”
• “Environment Settings”
• “Inputs and Stubbing”
• “Multitasking”
• “Coding Standards & Code Metrics”
• “Reporting”, except Bug Finder and Code Prover report (-report-

template)

You might have to change more of the default options when you run the Code Prover
verification because Code Prover is stricter about compilation and linking errors.

4 Polyspace Bug Finder and Polyspace Code Prover

4-10

